Grey wolf optimization (GWO) with the convolution neural network (CNN)-based pattern recognition system

نویسندگان

چکیده

The dynamic video frame dataset’s automated feature analysis addresses the complexity of intensity mapping with normal and abnormal classes. Iterative modelling is needed to learn component a in several patterns for various data types threshold-based clustering analysis. GWO optimises Convoluted Pattern Wavelet Transform (CPWT) vectors employed this paper's CNN technique. A median filter reduces noise smooths before normalising it. Edge information represents frame's bright spot boundary. Neural network based classification clusters pixels using recurrent learning minimal dataset training. filtered features were evaluated complex wavelet transformation extraction algorithms. These demonstrate spatial textural classifications. classifiers help analyse instances classify action labels. Categorization improves fewest training datasets. This strategy may be beneficial if compared optimal practises.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Encoder-Decoder Based Convolution Neural Network (CNN) for Future Advanced Driver Assistance System (ADAS)

We propose a practical Convolution Neural Network (CNN) model termed the CNN for Semantic Segmentation for driver Assistance system (CSSA). It is a novel semantic segmentation model for probabilistic pixel-wise segmentation, which is able to predict pixel-wise class labels of a given input image. Recently, scene understanding has turned out to be one of the emerging areas of research, and pixel...

متن کامل

HSI-CNN: A Novel Convolution Neural Network for Hyperspectral Image

With the development of deep learning, the performance of hyperspectral image (HSI) classification has been greatly improved in recent years. The shortage of training samples has become a bottleneck for further improvement of performance. In this paper, we propose a novel convolutional neural network framework for the characteristics of hyperspectral image data, called HSI-CNN. Firstly, the spe...

متن کامل

An Evaluation of Mahalanobis-Taguchi System and Neural Network for Multivariate Pattern Recognition

The Mahalanobis-Taguchi System is a diagnosis and predictive method for analyzing patterns in multivariate cases. The goal of this study is to compare the ability of the Mahalanobis- Taguchi System and a neural-network to discriminate using small data sets. We examine the discriminant ability as a function of data set size using an application area where reliable data is publicly available. The...

متن کامل

AN IMPROVED CONTROLLED CHAOTIC NEURAL NETWORK FOR PATTERN RECOGNITION

A sigmoid function is necessary for creation a chaotic neural network (CNN). In this paper, a new function for CNN is proposed that it can increase the speed of convergence. In the proposed method, we use a novel signal for controlling chaos. Both the theory analysis and computer simulation results show that the performance of CNN can be improved remarkably by using our method. By means of this...

متن کامل

Grey Wolf Optimization for Multi Input Multi Output System

Grey wolf optimizer (GWO) is a new technique, which can be applied successfully for solving optimized problems. The GWO indeed simulates the leadership hierarchy and hunting mechanism of grey wolves. There are four types of grey wolves which are alpha, beta, delta and omega. Those four types can be used for simulating the leadership hierarchy. In order to complete the process of GWO a three mai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Imaging Science Journal

سال: 2023

ISSN: ['1368-2199', '1743-131X']

DOI: https://doi.org/10.1080/13682199.2023.2166193